
Anyone who has written a pro-
gram has had to debug code. In many
cases, after staring at the code for hours,
we finally realize that we have done
something stupid like read an uninitial-
ized variable, or index beyond the end
of an array. With experience, the inci-
dence of these “doh!” bugs decreases;
but they can still be extremely frustrat-
ing and costly.

What we need at such times is an
infinitely patient, anal-retentive expert
to inspect every inch of our code. This
expert must be more thorough than
any compiler, and should report back
in a completely dispassionate way
everything that is potentially wrong
with our code. A programming tool
called lint is the closest you can get to
this ideal. If you don’t know what lint
is, or don’t use it, I suggest you read
on.

Lint is a tool similar to a compiler
in that it parses C/C++ source files. It
checks these files for syntactical cor-
rectness. To lint a file called foo.c,
one typically just types:

lint foo.c

at the command line. Naturally,
though, there are also many optional
command line switches.

Standard features

Whereas a compiler concerns itself pri-
marily with code generation, lint is com-
pletely devoted to checking your code
for a myriad of possible defects. The key

word here is possible. Just because lint
flags a section of your code for review, it
doesn’t necessarily mean a problem will
occur when you compile that code with
your particular compiler.

Lint is designed to be compiler-
agnostic and is, in fact, frequently in
the business of focusing your attention
on parts of the code that might result
in different behavior depending on
the specific compiler used.

The specific list of problems that
lint checks varies by implementation
and version of the tool. However, most
flavors of lint will at least check for the
following:

• Possible usage of uninitialized
variables

• Possible indexing beyond array
bounds

• De-referencing of null pointers
• Suspicious assignments (such as if

(a = b))
• Mismatches in variable types (such

as foo declared as a double in one
file and used as a long in another)

• Potentially dangerous data type-
combinations

• Unused variables
• Unreachable code
• Header files included multiple

times and/or unnecesarily
• Non-portable constructs

Lint checks so many things, in fact,
that it’s usual for the tool to produce
as many errors and warnings as there
are lines of code in the source file
that’s input. This is a big turn-off for

many potential users, since their atti-
tude tends to be “this tool is so picky
it’s ridiculous.” However, working
through each warning and correcting
it can be a rewarding exercise.

As an example, consider this seem-
ingly innocuous code:

main(void)

{

int i;

for(i = 0; i < 10l; i++)

{

printf("%d\n",i);

}

}

What will be the last number print-
ed when you run this program? If you
answered “100,” you’re wrong. This is
a perfectly valid program, and will
compile without warning on most any
compiler. However, lint will complain
about something. If you can’t see the
problem via inspection, then I suggest
you download the code from
www.embedded.com/code.htm and run it
through your favorite debugger. Note,
and a big hint here: do not simply type
this program into your editor. Observe
how long it takes you to find this prob-
lem—and then ask yourself whether
wading through lint warnings isn’t so
bad.

Getting the lint out

Notwithstanding the slightly contrived
example above, what sort of real world

Embedded Systems Programming MAY 2002 55

B E G I N N E R ’ S C O R N E R

Lint

✁
C

U
T

H
E
R

E
 ✁

by Nigel Jones

benefit can you expect from addressing
all of the warnings produced by lint? My
experiences on a typical project involv-
ing a small microcontroller (total code
size below 32KB) included the
following:

• Lint found two or three outright
bugs—before I had even started
testing the code.

• I learned something about the C
language each time I ran it.

• My final code was cleaner because
lint informed me of unused vari-
ables, macros, and header file
includes that could be safely
removed.

• I was better informed of potential
portability issues.

Given the above, it will probably
not surprise you to learn that organi-
zations that are really serious about
code quality often insist not only that
all code compile without warnings

(which is relatively trivial to achieve)
but also that it be “lint free”—that is,
generate no warnings with lint. This is
a much more difficult criteria to
achieve.

It’s worth looking at where lint
fits into the development process.
My general design flow is shown in
Figure 1. Once I have code that
compiles, I lint it. If the code gets
through lint okay, it’s highly unlike-
ly that I’ll be embarrassed in the
code review. During the debug
phase, it’s normal for changes to be
made to the code. However, once
the code is debugged, and before it
is passed to the release test, I nor-
mally lint the code again. Why? I’m
always amazed at the number of
sloppy coding constructs that occur
when code is being debugged. Lint
is a great tool for identifying that
ratty piece of code that was put in
there to help debug something and
then promptly forgotten.

Sources of lint

Lint is a standard tool on most Unix
systems. In the PC realm, you often
have to go out and buy it, or find a free
or shareware version. If you do buy
lint, rest assured it will likely be the
best money you have ever spent in
your embedded career. Most lint vari-
ants are relatively inexpensive (less
than $1,000) and worth every penny.

Incidentally, you may be wonder-
ing how well lint handles all those
nasty little compiler extensions that
are so common in embedded devel-
opment. This is an area where the
commercial programs outshine the
standard offerings. In particular,
some versions of lint allow consider-
able customization of lint’s rules,
such that all those extensions are
correctly handled. In some cases,
the compiler definitions are even
supplied by the lint vendor. In oth-
ers, you may be able to get them
from the compiler vendor.

If you don’t have access to lint,
but are using the GNU tools (on
Unix or a PC), simply use gcc’s
-Wall flag to achieve about 80% of
the same functionality.

So, for all the neophytes out there,
get yourself a copy of lint, and use it. If
nothing else, your boss will be impressed
with the maturity of your code. For all
the experienced hacks who aren’t using
lint—watch out! The new guys who are
using it might show you up. esp

Nigel Jones is a consultant in Maryland.
When not underwater, he can be found
slaving away on a wide variety of
embedded projects. He enjoys hearing
from readers and may be reached at
NAJones@compuserve.com.

Resources
Darwin, Ian F. Checking C Programs with

Lint. Sebastopol, CA: O’Reilly, 1988.

Get yourself a copy of lint, and use it. If nothing else, your boss will be
impressed with the maturity of your code.

B E G I N N E R ’ S C O R N E R

56 MAY 2002 Embedded Systems Programming

✁
C

U
T

H
E
R

E
 ✁

EMBEDDED SYSTEMS PROGRAMMING (ISSN 1040-3272) is published monthly, with an additional issue published in August, by CMP Media LLC., 600 Harrison Street, San Francisco, CA 94107, (415) 947-6000. Please
direct advertising and editorial inquiries to this address. SUBSCRIPTION RATE for the United States is $55 for 13 issues. Canadian/Mexican orders must be accompanied by payment in U.S. funds with additional postage of
$6 per year. All other foreign subscriptions must be prepaid in U.S. funds with additional postage of $15 per year for surface mail and $40 per year for airmail. POSTMASTER: All subscription orders, inquiries, and address
changes should be sent to EMBEDDED SYSTEMS PROGRAMMING, P.O. Box 3404, Northbrook, IL 60065-9468. For customer service, telephone toll-free (877) 676-9745. Please allow four to six weeks for change of address
to take effect. Periodicals postage is paid at San Francisco, CA and additional mailing offices. EMBEDDED SYSTEMS PROGRAMMING is a registered trademark owned by the parent company, CMP Media LLC. All material
published in EMBEDDED SYSTEMS PROGRAMMING is copyright © 2002 by CMP Media LLC. All rights reserved. Reproduction of material appearing in EMBEDDED SYSTEMS PROGRAMMING is forbidden without per-
mission. EMBEDDED SYSTEMS PROGRAMMING is available on microfilm/fiche from University Microfilms International, 300 N. Zeeb Rd., Ann Arbor, MI 48106, (313) 761-4700.

FIGURE 1 How lint fits into the development process

Design system

Code a module

Compile

Lint individual
module

Link modules

Lint all modules

Code review

Debug

Lint all modules

Release test

	return:

